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SECTIONI

INTRODUCTION

Atomic polarizabilities describe the changes in the charge distri-

bution of an atom when it interacts with an electric field and because

of its close relationship to dielectric constants, the study of dipole

polarizabilities has a lengthy history. Interest in atomic shielding

factors is of more recent origin and was stimulated by attempts to

determine nuclear quadrupole momentsfrom observations of hyperfine

structure. To a first approximation, atomic hyperfine structure is due

to the interaction between the nucleus and the valence electrons and

the inner closed shells of electrons act merely to screen the nuclear

charge and so to modify the electrostatic field in which the valence

electrons move. However, another type of shielding occurs because the

valence electrons distort the spherical symmetry of the closed shells

and the distorted shells then interact with the nucleus. Alternatively,

the nuclear multipole momentsinduce equivalent momentsin the charge

distribution of the closed shells and these momentsthen interact with

the valence electrons.



Although they refer to different phenomena, polarizabilities and

shielding factors are examined together in this review since the math-

ematical procedures for calculating them are very similar and a larger

body of experimental data becomes available for assessing the accuracy

of the methods used.

I.I DEFINITIONS

When an atom is placed in the field of an external charge Z _, it

is polarized and the resulting distribution of charge can be character-

ized by a series of induced electric multipole moments, each of which

is proportional to Z _ provided Z _ is small. The induced dipole moment

is related to the electric field of the charge through the atomic dipole

polarizability, _d" The induced quadrupole moment, _q, is related to

the gradient of the electric field of the charge through the atomic

(field-gradient) polarizability. Similar relations involving higher

order derivatives of the electric field apply to the higher pole polar-

izabilities.

The electric field of the external charge is also modified by the

charge distribution of the atom and the dipole shielding factor, _oo'

can be defined as the ratio of the change in the electric field at the

nucleus due to the charge distribution of the atom to the electric field

at the nucleus due to the external charge alone. The quadrupole shield-

ing factor, _ , is the ratio of the change in the gradient of the elec-

tric field at the nucleus due to the charge distribution of the atom

Occasionally a different meaning is attached to quadrupole (and higher

pole polarizabilities). The uniform part of the electric field induces,

by a second order dipole-dipole coupling, a quadrupole moment which is

proportional to Z 12 The constant of proportionality is also referred

to as a quadrupole polarizability.



to the gradient due to the external charge alone. Similar definitions

involving higher order derivatives of the electric field apply to higher

pole shielding factors. Shielding factors can be defined alternatively

as the ratio of the multipole moment induced in the electron charg_

distribution to the nuclear multipole moment which gives rise to it.

When the atomic system is not spherically symmetric, the distor-

tion of its electron distribution by the electric charge will depend

upon the orientation of the atomic system. In such cases, it is con-

venient to average the polarizabilities and shielding factors over all

orientations.

1.2 QUANTAL FORMULAE

Suppose the unperturbed atom has N electrons with position vectors

r, referred to the nucleus as origin and let Z be the nuclear charge.

The unperturbed Hamiltonian is given in atomic units by

N

H = - I _ 2i. + Z/ri _ I T Iri -rj'+ L._ 1

i=l i<j

(i)

and the unperturbed eigenfunction qr° (r), when _ denotes collectively

all the position vectors r. satisfies the Schr_dinger equation

E
O

(H - Eo) _r° (_) = o,

being the unperturbed eigenvalue.

(2)



Suppose also that the external charge Z' is located at r t and that

r / is large. Then the interaction potential

N

V(r, %') ZZ'r, - Z' I i
- Ir i - r/ I (3)

i=l

may be expanded in the form

V(r, r/) = Z/'(Z - N)r I

N _ k

ii r._ Z, z

r/k + 1
i=l k=l

Pk(COS @i) (4)

_%X _"

where (ri, @i,¢i) are the spherical polar co-ordinates of _1'r"the polar

axis being chosen such that the co-ordinates of r _ are (r/, o, o) and

Pk (cos 8i) is the Legendre polynominal of order k. The constant

spherically symmetric part of V(_, _/) is of no interest here and we

replace (4) by

N _ k

V(r,rZ ) = _Z / 1 Pk(COS @i )
rtk + 1

i=l k=l

(5)

Let _ (r I r/) be the wave function of the system when a charge

Z _ is placed at r _, Provided the unperturbed state is not degenerate

(as we shall assume), the perturbed wave function may be written in the

form

_(_ [ rl) = _o ([) + Z/ L +
O(Z ,2)

r/k + I

(k) being chosen so that

k=l

(_l(k)' _/o) = o

(6)

(7)



for all values of k.

to the order of ZI

The requirement (7) ensures that _ is normalized

Weshall define the electric multipole momentof order 2L of a

charge distribution as

£ 2L = - , r i LPL (cos e i ) _ •
/

(8)

To the order of Z/, (8) is

_2 L =-2 Z I I+ i / 41(k), ri (cos ei) 4o (9)

k=l i=I

The electric field strength at the nucleus due to the charge Z z is

®Z//r/2 and the dipole polarizability is given by

N

(z d = 2 _ _I(I)' i=ll ri PI (c°s el) _° 1 (i0)

The gradient of the electric field at the nucleus is -2ZZ/r z3 and the

quadrupole polarizability is given by

N

cz q : 2 41 (2), r P2(cos el) 4o , (ii)

i=l

the factor of 2 being inserted so that (Ii) conforms with the defini-

tion of _ employed in most of the literature (c.fo Sternheimer 1954).
q

We are assuming that the wave functions are real. If they are not,

the real part of the expression is to be taken.



In general, the 2_ pole polarizability is given by

N

<os0  o 
i=i /

(12)

2L+I -9
in units of a , as being the Bohr radius 5.292 x i0

o
cm. With this

definition, the polarizabilities of any atom in its ground state are all

positive quantities.

The electrostatic potential at the nucleus due to the atomic

charge distribution and to the external charge is

N

(r,_') =- >', 1-- +
r. r z

L=I I

and the expectation value of the electric field at the nucleus is

accordingly

(13)

' 2
r. r z2

i=i 1

which to first order in Z is

(14)

i _ (k)2Z I
k I -rl '

k=l
I Pl(COS ei) _- Z--!

ri2 _ro r/2

(15)

The dipole shielding factor is therefore

B °o ----2

S _ PI (c°s ei)

_rl(I) '_ 2
[_ i=l ri

(16)



Feynman (1939) has shown that the force on a nucleus of charge Z

is Z times the electric field at the nucleus due to all the electrons

plus the fields from the external charge. The force of an ion charge

Z I acting on an ion of net charge (Z - N) is simply -(Z-N) ZI/r 12 in

the positive r _ direction and the corresponding total electric field is

-(Z - N) Zr/2, Comparing with (15), it follows that

N
= _ , (17)

an argument first published by Sternheimer (1954). The dipole shield®

ing factor is consequently a known quantity. Its interest lies in the

fact that (16) contains the first-order perturbed function _i (_) which

is required for the evaluation of the dipole polarizability. The rela-

tionship (17) provides an assessment of the accuracy of the calculated

first-order functions.

The expectation value of the gradient of the electric field at the

nucleus is N

os>z' 3 _ -_13
i=l ri

(18)

which to first order in Z/ is

2Z / _ I _ (k)k=l r/ k + I _rl '

2Z I

r z3

N

7
i=l

2P2(cos ei)

3
r.
I

(19)

7



The quadrupole shielding factor is therefore

N

(. _rI (2) ' i=iZ P2 (c°sei)r.13 _r\'o)
o

In general, the 2L - pole shielding factor is given by

(20)

[Y (L) , 7 PL(C°S @i)
72L 2

\\_I f__, L + I / ,i=l ri /
(21)

which is dimensionless. With this definition, a positive value of v2L

corresponds to shielding and a negative value to antishieldingo



SECTIONII

PERTURBATIONTHEORY

2.1 THEFIRSTORDEREQUATION

The description of the determination of _i (k) (r) can be simpli-

fled by treating each term of V (_, _/) as a separate perturbing poten-

tial. Thus, writing

N

vk(r) = " Z r.l kPk (cos ei), (22)

i=l

the perturbed wave function _k(_) can be expanded in the form

_k(_ ) = _o(% ) + Z/ _l(k) (%) + Z/ 242(k) (_) + 0(Z,3) (23)

and the perturbed eigenvalue in the form

gk = Eo + z/ _i (k) + Z/2 '£2(I<) + 0(Z/3). (24)

Then the wave equations of the perturbed system

(H + Z/v k 6k ) %k = 0 (25)



may be replaced by the sequence

(H - Eo) _ro= 0
(26)

(H - Eo) 41(k) + (Vk - _'l(k) 4o = 0 (27)

42(k) - _I (k)) qrI (k) _2 (k) 0(H - Eo) + (vk - 4o =
(28)

From (27)

@zl(k) = ( 4o, vk 4o) (29)

and from (28),

_2 (k) (k) Vk 40 )= ( _I '
(30)

But from (12)

(z2L = -2 (41 (L), vL 4 o)
(31)

so that

(L) i
£
2 = " _ (z2L

(32)

The shielding factor (21) may be written

(L) 4o )72L = 2( gr 1 , vt L
(33)

i0



where

N

vZk (r) = I Pk(C°Sk+ iei)

i=l r.i

(34)

It follows from symmetry considerations that (33) is identical to the

alternative form

(L) I
72L = 2(4 1 ' VL _ro)

(35)

where

_rI (k) z(H - E o) + (v/ " _ (k) Zk i ) _ro = 0
(36)

such that

(k) _
( _r1 , _ro) = 0

(37)

and

_. (k) z
i = ( 40' VZk 40) '

(38)

A formal proof of the identity of (33) and (35) follows from the

use of (26) to yield

(L) Z I H - E I _rI(L))(L) Z v L _'o) : " ( _rl o( _I_I
(39)

ii



and (36) to yield

!

(L)) = ( _I(L) _ro) (40)-( _i (L) I H - E° I _rI , vlL

2.2 THE HYDROGEN ATOM

As a demonstration of the theory of _ 2.1, we consider a hydrogen

(k)
atom in its ground state. Equation (26) for 41 can be simplified

v

by writing

_l(k) (_) = f(k) (_) _o (r_ (41)

Then f(k) (_) satisfies the equation

N N

- i I _7 2 f(k) -1%v2 i i f(k)

i=l i=l

For a hydrogenic atom in its ground state

_O

+ vk - El(k) = 0:

(42)

I

(r) = (Z3/ _ ) _ exp (-Zr)
0

(43)

and (42) reduces to

_ _I _.2 f(k) + Z d-f(k) - rk
2 dr Pk (cos @ ) = O. (44)

with solution (Dalgarno and Lewis 1955) '

12



_ k+l
i r

f(k) '(r_ = _ k + I + k)r__ Pk (cos e)kZ
(45)

From (30) the multipole polarizability is

= (2L + 2) _ (L + 2)

_2 L 22L + i Z2L + 2L(L + i)

(46)

and from (33) the multipole shielding factor is

2

T2L = L(L + i) Z
(47)

The solution (45) for k = i was first obtained by Waller (1926),

who calculated the dipole polarizability of atomic hydrogen.

2.3 UPPER BOUNDS

Except for one-electron systems it is not possible to solve (27)

exactly. It may be solved formally by substituting the expansion

(k) S (k)_rI (_) = at _rt ([)

where _rt(r) is the eigenfunction of the t th excited state of the

unperturbed atomic system, satisfying the wave equation

(4S)

(H - Et) _rt(r) = 0 (49)

13



and the prime on the summation irrTieata_ that the term t _ 0 is exclededo

(k)
Then the expansion coefficients at are given by

(k) (_t' Vk _o )

at = " E t - Eo (50)

and

S" I(_t ' vL _o) I

_2 L = 2 E - E

t o

2

, (,51)

which is clearly positive for all ground state atomic systems.

The convergence of the summation over t as the number of terms is

increased is usually slow, as Tillieu and Guy (1954) have explicitly

demonstrated for atomic hydrogen. If transitions to continuum states

are unimportant, the convergence can be made more rapid by using the

equivalent formula (Lennard - Jones 1930)

p

u S
_2 L = _2 L + 2

(El(L) _ Et ) I (_t'VL _o) i 2

(L)
(E1 - Eo) (Et - Eo)

(52)

where

u 2 "

(72L (L) (_o' VL2 _'o) (_o' VL _o ) ' "(53)

(E 1 - Eo)

14



and the prime on the summationi:".'7:i-_eateathat the term t = 0 is ._xclu_ad.

(k)
Then the expansion coefficients at are given by

(k) (_t' Vk _o )

at = E - E (50)
t o

and

J( t'VL )j

E - E
t o

(.51)

which is clearly positive for all ground state atomic systems,

The convergence of the summation over t as the number of terms is

increased is usually slow, as Tillieu and Guy (1954) have explicitly

demonstrated for atomic hydrogen. If transitions to continuum states

are unimportant, the convergence can be made more rapid by using the

equivalent formula (Lennard - Jones 1930)
i

/

_2 L = _2 _ + 2 5 (El(L) " Et) I (_t'Ve _°)I 2

(E I (e) (52)E o) (Et - Eo)

where

u 2 "

_2 L = (L) (_0' VL 2 _'o) - (_o' VL _/o) ' "(53)

(E 1 Eo)

14



El(L) being the eigenvalue of the lowest excited state for which (_i'

vL _o) does not vanish. With few exceptions, neither (51) nor (52)

provides a useful meansof computing _2L' but it is valuable to note
u

that, since El(L) - Et is negative _2L is an upper bound

U

_2L -<-_2L (54)

2.4 OSCILLATOR STRENGTH FORMULA

Formula (51) may be used to derive accurate values of the dipole

polarizabilities for the few atomic systems for which reliable oscillator

strengths are available. The electric dipole oscillator strength corres-

ponding to the transition from the state _o to the state _t is defined

by

2

fot = _ (Et - Eo) (_t' _ %i _o) (55)
i

and in terms of it,

!

C_ot = S fot/(E t - Eo )2 (56)

Dalgarno and Kingston (1959) have used (56) to predict the polari-

zabilities of the alkali metals and their results are given in Table i.

The error is unlikely to exceed 10%. Their predictions disagree with

15



early measurementsbut have been confirmed by the recent experiments of

Salop, Pollack and Bederson (1961) whose results are also included in

Table i.

The dipole polarizabilities of metastable helium in the 21S and 23S

states (Dalgarno and Kingston 1958) and of the negative hydrogen ion

(Bates and Lewis 1955, Geltman 1962, Dalgarno and Ewart 1962) have also

been obtained by summing the individual terms of (56) but because of the

contribution from transitions to the continuum, the method is rarely

convenient. Donath (1962) has essentially used (56) to predict the

dipole polarizabilities of F-, Ne and Na+, the wave functions of a num-

ber of discrete states being determined by variational methods. The

results are not encouraging and a direct variational attack on the com-

plete surm_ation is usually to be preferred.

2.5 APPROXIMATE FORMULAE

Approximate evaluations of (51) can be made by replacing E t -

in the denominator by a mean excitation energy E, yielding

E
o

_ 2 ((9o, VL 2 ), (57)
C_2L E _/o) " (_o' VL _o )2

A common choice for E is the ionization potential of the atom and

the resulting formula usually yields values of _2L which are correct to

within an order of magnitude.

16



TABLEi

DIPOLEPOLARIZABILITIESOFTHEALKALIMETALSIN UNITSOF 10-24 cm3

Li Na K Rh Cs

0, ,

Formula (56) 24.4 + 2.4 24.6 + 2.5 41.6 + 4.2 43.9 + 4.4 53.8 _+ 5.4

Measured 20 + 3.0 20 + 2.5 40 + 5.0 40 + 5.0 52.5 + 6.5

A more interesting choice of E is such that

i 2 2S (Et - Eo) I (_/t' VL _o ) I = E l(_t , vL _o)I (58)

t t

(Vinti 1932).

for _2L'

We shall demonstrate in_3 that it leads to a lower bound

It is apparent from the form of (57) that (56) is valuable for

those systems in which

(_i' VL _o )2 >> (_2' VL _o )2 >> (_3' VL _o )2 (59)

(Vinti 1932), as is often the case.

The procedure of replacing E t - E° by a mean energy E also yields

approximate formulae for shielding factors

17



2( iC_2L _--E (9o' VL VL 9o) (_o' VL 9o) (_o' VL 9o (60)

but they may be very misleading; the condition analogous to (59) is not

satisfied, transitions to continuum states being of great importance.

This is reflected in variational calculations by the sensitivity of

shielding factors to the assumed trial functions.

18



SECTIONIII

VARIATIONALMETHODS

" 3.1 APPROXIMATEFORMULAE

As (327 demonstrates, electric polarizabilities are directly related

to the change in energy due to the perturbation and they may be deter-

mined therefore by application of the conventional Rayleigh-Ritz varia-

tional methods. Many of the early studies proceeded by substituting a

trial wave function _t for the perturbed system into the expression for

the total energy

= (_tlH + V I _t ) (61)

and minimizing, the final expression being expanded in powers of the pre-

turbing potential. It may be shown (Slater and Kirkwood 1932, Dalgarno

and Lewis 1956) that provided _o is the exact unperturbed eigenfunction

this procedure is equivalent to the simpler one of minimizing the func-

tional

_ (L) = (_i (L)[(H- E [ _i (L))+ 2 (_i (L)[ VL _I(L)I _o ) (62)2 o
t t t

19



with respect to a trial first order perturbed function _i (L) In prac-
t

tice, _o is not the exact eigenfunction and the former method introduces

spurious terms, which if retained may seriously affect the derived polar-

izability. If they are ignored, the procedure is again equivalent to

the use of (62).

The variational trial wave function

_i (L)(r)=t <VL - _I(L)_ _/°(r) (63)

if of special interest. Writing

VL = VL - _I"(L) ' (64)

it follows that

- 2

-(_o' Vn _o)
XL = (65)

(ve _o IN Eol ve _o )

and

d (L) _ -(_o' VL2 _o )2

2 (ve _olH - Eol v e _o )
(66)

Thus

2 2

_g 2(_o' vL _o)

2L -(v e _oiH - Eol ve _o )
(67)

is a lower bound for &2L'

20



It is a simple matter to show that the denominator of (68) is equal

to the infinite summation (59)

SI (Et Eo)l(_t' VL _o)12- = (VL _o JH - EolVL _o) (68)
t

(Vinti 1932, Dalgarno and Lewis 1957), thereby proving that the choice

of E described by (59) leads to a lower bound.

The denominator of (68) can be written in the simple form

N

(VL _oIH EolVL _o) = - (VL _o' I Vi vL . Vi _/o). (69)
i=l

For L = i, integration by parts shows that

i
(vI _olH - EolV1 4o) = _ N (70)

(this being the Thomas-Kuhnoscillator strength sumrule when taken

with (68)), so that

2 2
4 (_Oz , vI _)

CZd >-- N (71)

(Kirkwood 1931, Vinti 1932). For heavy atoms, the lower bound given by

(71) is very much less than the actual value and a better indication is

of the possible magnitude of _d is provided by replacing N by the number

of electrons in the outmost shell.

21



For most atomic system in states of zero orbital angular momentum

(but not all),

(4o' I I r ° r_ i _ j 4 ) <0o (72)
i_ j

and (70) can be replaced by the expression

N

4 I_d >-- 9-_ (4o'

i=l

2 2
r. *)

1 0
(73)

The diamagnetic susceptibility of a gas is

2L 2 Ne a

o _X = (_o' r,
l

6 mc
i=l

4o) (74)

where L is Loschmidt s number (c.f. Van Vleck, 1932) and Kirkwood (1931)

proposed the semi-empirical formula

Le 2 a 1/2
o 1/2

X = 2 (N _) , (75)
4 mc

later modified by Vinti (1932) to take account of the _ i _ j terms

and by Buckingham (1937) to give more precise significance to the value

of N. The formula is surprisingly successful (Brindley 1933, Buckingham

1937).

22



Simple formulae can also be derived for higher order polarizabilities.

Thus for atoms in S states,

N

$I I(Et - Eo)l (_t' v2 _o )12 8 2= _ (_o' rol _o )

t i=l

(76)

(Dalgarno and Lewis 1957) so that

2

3(_ o , v 2 _o )
C_ > (77)
q-- N

4 (@o ' r i _o )

i=l

Dalgarno and Lewis (see also Stewart 1961) have suggested several formulae

for estimating the order of magnitude of _q, which are based on (77).

They suggest, in particular,

(i)
d (El - Eo

~ )2 (78)
q 2 (E1(2) _ Eo

which has the merit that it does not require a knowledge of any wave

functions.

The reliability of these various approximate formulae depends upon

the degree with which condition (59) is satisfied and there is little

value in carrying through a similar development for shielding factors.

23



An interesting generalization of (63) has been proposed by Pople

and Schofield (1957). They use as trial function for the calculation

of dipole polarizabilities

N

_i (L) = _o (Tg) I f(ri) cos e.
i

t
i=l

(79)

where f(ri) is allowed to vary arbitrarily. They show that if _o(_) is

represented by the Hartree-Fock approximation the optimum form of f(ri)

is the solution of a simple differential equation which may be integrated

numerically. The computation involved is less than that of the Stern-

heimer procedure (Para. 4.4) and the method does not encounter any diffi-

culties arising from exchange effects, (79) being a properly antisym-

metrized function. For argon, Pople and Schofield obtain a dipole polar-

o3
izability of 2.03A compared to 2.40_ 3 given by the Sternheimer proced-

O

ure (Kaneko 1959) and to 1.64A 3 given by extrapolation of refractive

index data (Dalgarno and Kingston 1960). Because of its simplicity, the

method merits further application though it is less accurate than the

uncoupled and coupled Hartree-Fock approximations (Para. 4).

3.2 TWO-ELECTRON SYSTEMS

More complex trial wave functions have been used for the two-electron

systems H-, He and Li+. It is clear from the work of Hasse' (1930, 1931)

and of Barber and Hasse' (1937) that _d is sensitive to the adopted repre-

sentation of the unperturbed wave function _o but that provided the form

24



of the trial perturbed wave function 41(1) is carefully chosen, conver-

gence of _d is obtained with a small numberof parameters. Using the

six-parameter representation of _o due to Hylleraas (1929) and the trial

wave function

_I(i) (rl, r2 ) = (ar I + brl 2 + crl3 ) cos #i + (ar2 + br22 + cr23)

(8O)

10-24 3Baber and Hasse' obtained (0.2045 + 0.0005) x cm for the dipole

polarizability of helium. More recently Schwartz (1961) has used an 18-

parameter representation of _o and a much more flexible trial function

• _ 10-24 3_I (i) and he computes a value of (0 2050 + 0.0001) x cm . This
t

value does not agree with the most recent directly measured value of

10-24 3(0.2068 + 0.0002) x cm (Johnson, Oudemans and Cole 1960) but it

is in harmony with the value of 0.2051 x 10 -24 3cm obtained by Dalgarno

and Kingston (1960) from a careful extrapolation of refractive index

data.

A different type of trial function has been investigated for helium

by Abbott and Bolton (1954), which is essentially a sum of excited ip

state wave functions. This choice must share some of the convergence

difficulties associated with the evaluation of (56) and compares unfavor-

ably with (80).
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Baber and Hasse' (1937) have also obtained a value of 0.02862 x

10-24 3cm for the dipole polarizability of Li+ which is again based on

the 6-parameter representation _o and a trial function (80). The value

obtained from an analysis of the spectral term defects (Mayer and Mayer

, 10-24 31933 Sternheimer 1954) is 0.0235 x cm but the variationally

determined value is undoubtedly the more accurate•

m

Schwartz (1961) has also calculated the dipole polarizability of H

using wave functions similar to those he adopted for helium. He finds

-24 3*
that _d = 31.4 x I0 cm which agrees well with that obtained, _d =

• 10-24 330 2 x cm (Geltman 1962, Dalgarno and Ewart 1962) by evaluating

(56) from the photo-detachment cross sections computed by Geltman (1962).

The only refined calculation of a quadrupole polarizability and a

quadrupole shielding factor appears to be that of Dalgarno, Davison and

Stewart (1960). They employ the Hylleraas representation of _o for helium

and a trial function similar to (80) but with an additional parameter

= 10-40 3and obtain _ 0.0942 x cm and 7_ = 0.397. As they demonstrate,
q

_q is rather sensitive to the adopted form of _o and it is probable that

their value is too small, the uncertainty being about 5%. The value of

7_ is probably accurate to within an error of 2%.

Detailed variational calculations of the type applied to two-electron

systems are scarcely feasible for more complex systems and for them it is

natural to seek an extension of the Hartree-Fock scheme for unperturbed atoms•

* -24 3
The value published by Schwartz is 26.8 x i0 cm . I am informed by

Dr. L° M. Branscomb that this value is incorrect and that Schwart's

calculations actually yield the value quoted in the text.
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SECTION 4

THE HARTREE-FOCK APPROXIMATION

An extension of the Hartree-Fock approximation scheme to the deter-

mination of polarizabilities and shielding factors has been carried out

by Dalgarno (1959), Kaneko (1959), and Allen (1960). The essential

features are contained in earlier discussions by Peng (1941) and by

Temkin (1957). Because of its close connection with earlier work, we

begin with a description of the Hartree approximation in which electron

exchange effects are ignored.

4ol THE HARTREE APPROXIMATION

In the Hartree approximation, it is assumed that the unperturbed

functions may be written in the form

N

_o (_) =

i=l

(o)
u,1 (ri) (81)

where the orbitals uo

H,u.

i i

I (°) (_i) are eigenfunctions of the equations

(o)
(ri) = (-1/2 V.2 + V (ri)) u (°) (ri) = ciui (O)I i i (ri)'

(82)
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\

the self-consistent potential Vi(rl) being defined by

lUk (°)

Vi(ri) =- _. + I f

(rk)

i k_i Iri - rk J

I2

dr k (83)

and the summation being over the occupied orbitals.

The orbitals u.
i
(o) (ri) are written as the product

(o) Po(ri _i Iri)

u. (ri) = Y_ (@i (84)i r. .m. '¢i )
i I I

where n., £. and m. are respectively the principal, azimuthal and magne-
i i I

tic quantum numbers specifying the orbital, Po (niLilri) is the radial

wave function normalized so that

oo

f
0

Po(ni_iJri) Po(ni z £ilri) dr = 5n'n'/li (85)

and Y_.m. (ei'_i) is the spherical harmonic of order £i.
i I

reduces to

Then (82)

d 2 £i(Zi + i) (o)
-1/2 -- + Vi(ri) + 2 - 6,

dr 2 2r.
i

Po(ni£ilri) = 0

J

(86)

4"
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The total unperturbed function _ o(_) is a solution of

t) @ (r) = 0(H / - E °
(87)

where

N /y lui(O)(ri)12 luk(O)(rk)I2

i=l i<-k _i

dr.
dr k

(88)

and

e ! =

o

N

I
i=l

ff (o) 2 ukJo) 2(o) i7, -
i<k _l

dr. d_k.

(89)

The first order perturbed wave function is written in the form

N u.(1)
(r i )

_l (r) = 2_,
i=l u._(°)(ri) _o (r)

l
(90)

where we have suppressed the superscript L. Corresponding to (90), the

electric multipole polarizability is given by

29



_2L = 2
i_i u (i)

riLP L (cos ai) u i (91)

and the multipole shielding factor is given by

72 L = 2 I ui(1)' PL(C°SL+ i el) u.l(°)

i= I r.l J

(92)

The procedure of Pople and Schofield (1957) is equivalent to (90) with

(o)
the restriction that u.'l'/u, be independent of the electron shell.

i i

4°2 THE UNCOUPLED HARTREE APPROXIMATION

(1)
There are two procedures for specifying the perturbed orbitals u.

i

(ri) (Dalgarno, 1959). In the simpler procedure, the radial parts of

u. (°)-- and u. (I)- are allowed to undergo independent but otherwise arbit-
i i

rary _ariations. This is equivalent to the assumption that

(H z Eol ) _/l(r) + v L _o(r) = 0. (93)

Substituting (90), it follows that

(H. - c (o)) ui(l )i i (ri) + vL(ri) u.1(°)(ri) = 0 (94)
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whe re

riLPL < (o)VL (ri) = (cos Ol) u.i riLP L (cos ei) u i (95)

it being convenient to require that

u. (1) (o)_l , U.I =
(96)

4.2.1. Expressions for _2L and 72 L. Foley, Sternheimer and

Tycko (1954) pointed out that (94) can be reduced to a finite set of

uncoupled radial equations. Thus, generalizing their procedures, we

express the inhomogeneous angular part of (94) as the finite sum

PI (c°s 8i)Yz.m. (0i, $i )
ii

2 £i + ii_i/2FL__ 2 _z i_" C(L£I£ I;• i Omi)

£.I . i
1

/;oo) Y_. , _i ) (97)C(L£i£i / m. (@i
i l

where C(£i_2_;mlm2) is the Clebsch-Gordon coefficient in the notation

of Rose (1957). Accordingly, we may write

u (i)
i (£i) 2Z i + 1 _I/2 C(L£i_i I ; Omi) C(Lii£i / ;oo)
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x Y_ / m i (0i, %)
i

PI (ni_i ;_i / Ir
(98)

and (94) becomes

_ d 2 _i (_i / + i)
1/2 -- + Vi(ri) + -- -

dr 2 2r 2
i(°)> Pl(ni_i;_i llr

J

+
L f Po Ir) rLr - 5£ (ni_i Po

i o

(ni_ilr)dr _ Po(ni_ilr) = 0

(99)

for all values of iiz included in the sum (97). In solving (99), care

must be taken to insure that / Pl(nili[r) Po(ni_i[r)dr = 0. (i00)

o

The multipole polarizabilities become

_2L = 2
I 2_ i + I )I (_ C (Lfi£i/;°°)2

- x IL(ni_i;_i/)

n._ £./ l" + i
i i

I C(L£i£i/; omi)2

m i

(I01)
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where

oo

IL(ni_i;_i/) = f

0

Pl(ni_i;£i Ir) rLz Po(ni£il r)dr (102)

and the summation is over the occupied orbitals. Averaging over all

orientations of the undisturbed atomic system, (i01) simplifies to

I I a(ni_i)_2L = 2 (2L + i)

n._. _./
l l l

C(L£i_i/;oo) 2 IL(ni£i;_i/) (103)

where a(ni_i) is the number of electrons in the (ni£i) shell. The

parity C-coefficient C(L£i_i/;oo) vanishes unless _i / lies between L + £i

and ]L - £i] and unless L + _i + _'/I is even. Its value is

_'L / + i i_ I/2
(_i)i/2 - iC(L_i_i/;oo) = (L + _. _i/) 2_.

/ +
l + £i + £i

"[(L + £. + _./)
1 1

(L + _. - _./) T (L - £. + £./) T (-L + _i + £'/)
i i i i i

(104)

where

(Racah 1942).

T(x) = (i/2x) ! / : (105)
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Straightforward evaluation of (104) yields for closed shell systems,

the dipole polarizability formula

_d = _ _ + I) ll(n_;£ + i) + £Ii(n£;£ - I (106)

n_

the quadrupole polarizability formula

= 6 I _(_ q- i) (_ + 2)q _ (2_ + 3)
n_

2_(_ + i) (2£ + I)
12(n_;_ + 2) + 3(2_ - I) (2_ + 3)

(_ - l)_ !

12(n_;_) + (2_ - i) 12(n_;_ - 2)j ,
(107)

the octupole polarizability formula

7

Q8 = 1--6

n_

(_ + i) (_ + 2) (_ + 3)(2_ + 3) (2_ + 5)
3£(_ + i) <£ + 2)

13(n£;_ + 3) + 5(2_ - i) (2_ + 5)

- (I - 2) (I - I)
13 (n_'_, + I) + 35 (2_(__i)3)2(I(2_++I)3) 13(nI;£ - i) + (2_ - 3) (22 i)

(lo8)

and the hexadecapole polarizability formula
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°_12 _3s 18

nZ
(2 +i) (2 + 2) (2 + 3) <£ + 4)(22 + 3) (22 + 5) (22 + 7) 14(n2;2 + 4)

+ 4 2(2 + I) (2 + 2).(_ + 3)
7 (22 - i) (2_ + 3) (22 + 7) 14(n2;Z + 2)

18 .(_ i) _(Z + i) <Z + 2) (2£ + I) 14(nZ;Z)+ 3-_ (2_ - 3) (2_ - I) (21 + 3) (2_ + 5)

4 (_ - 2) (2 - 1) 2(2 + 1)
+7 (22 - 5) (2Z - 1) (2Z + 3) 14(n_;2 - 2)

+ (_ - 37 <_ - 2) <_ i)

(22 - 5) (2_ - 3) (2_ - i) 14(n2;2 - 4))

(i09)

Some of the terms of (106), (107), and (109) for small values of

have been derived previously by Foley, Sternheimer and Tycko (1954) and

Sternheimer (1954, 1961).

The multipole shielding factors are given by expressions identical

to (i01) (109) except that l(n_;2/) is replaced by

t i Po(n_l r)dr" (ii0)J(n_;2/) = PI/(n_;2zlr) L + i
r

O
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Alternatively, l(n_;£ I) may be replaced by

ji (n£ ;Zl ) / PiI(n£;£Zlr)r L Po(n_Ir)dr

O

(ill)

where PiI(n£;£Zlr) is the solution of

d 2 £1(_i + i) c (o)_ (n£;£/Ir)1/2 -- + Vi(r ) + 2 i PI !
dr 2 r J

+ i Po (n_[r) L + 1
L + 1 - 8££/ r

0

P (n£[r) = O. (112)
O

4.2.2. Solution of First Order Equation. Equation (99) may be

solved by direct numerical integration and Sternheimer (1954, 1957) has

described in detail a suitable computational procedure. He points out

that the labor involved in a direct evaluation of Vi(ri ) can be avoided

by using the relationship

•(°) 1/2 ( i d2p(ni£ilri) - £i(£i +I))2 "Vi(ri) - el = e(ni£ilri) dr. 2 r.
i i

(113)
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The method of numerical integration usually involves several iterations

and is tedious to apply.

Equation (99) may also be solved by variational methods. It is

instructive to return to Equation (94) and to construct the functional

(2) / (i) (o) (i) (i)
(u. I H. - 6. I u + 2 u I Ve(r i) I ui(°

6i = \ i 1 I i . i

(i14)

Minimizing 6° (2) with respect to the trial function
i

u.(I) (ri) = k vl(ri) u. (°) ([i)
i i

(ll5)

leads to the dipole polarizability formula

N

_d = g ui , u.1

n=l

(116)

which was derived by Hellman (1935) and by Buckingham (1937) by super-

ficially different methods. Several of the other more complicated form-

ulae derived by Buckingham (1937) and by Bravin (1953, 1954) also follow

directly from (114) using the more flexible trial functions

u.(1) 2) (o)
i (_i) : (a + bri + cr.l Vl(£i ) ui (_i) (i17)
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It is clear from (98) that, except when _ = 0, (117) has the wrong

angular dependence.

The simplest trial orbital with the correct angular dependence is

given by (98) with

Pl(ni_i;_illr) = X(ni_i;_i i) r Po(ni_ilr),
(118)

but it leads to negative polarizabilities (except when _ = 0). With

more complicated trial wave functions, it is possible to obtain solutions

of (94) of comparable accuracy to those obtained from numerical integra-

tion and with less labor. It has been common practice in recent years

to select trial functions of the form

Pl(ni_i;_iilr) = I aSrSp (niZilr) (119)O

S

a choice which has the advantage that by using (84) the potential Vi(r)

can be removed from the calculation. It has the disadvantage that it

forces nodes into Pl(ni_i;_ilr) which should not occur (Sternheimer 1959).

The effect on the derived polarizabilities is usually not serious, partly

because the polarizabilities are determined by the distortion at large

distances from the nucleus, but many of the variationally determined

shielding factors are of uncertain accuracy.

38



4.2.3. The Helium Isoelectronic Sequence. The only systems to

which the Hartree approximation may properly be applied are those com-

prising the helium isoelectronic sequence. The dipole and quadrupole

polarizabilities and shielding factors have been obtained by numerical

integration of (99) (Sternheimer 1957, 1959) and by variational methods

using (117) (Das and Bersohn 1956, Wikner and Das 1957). There are

small discrepancies between the two sets of values which can be attri-

buted to the different representations employed for the unperturbed

orbitals. The results are given in Table 2 which includes also the most

accurate estimates available of the various quantities.

With the notable exception of H', the accuracy of the uncoupled

approximation is good. It improves rapidly with increasing nuclear

charge and it is better for polarizabilities than for shielding factors,

suggesting that the approximation provides a more accurate description

of the distortion in the electron density in regions far from the nucleus

than in regions near to the nucleus.

For more complex systems, the influence of exchange effects requires

consideration.

4.3 EXCHANGE EFFECTS

Buckingham (1937) found that (116) yielded dipole polarizabilities

in better agreement with experiment if the unperturbed Hartree wave

functions were replaced by the unperturbed Hartree-Fock wave functions

and following Sternheimer (1954) it has been common practice to similarly

modify the uncoupled Hartree approximation. Thus, in (99) and in (113),
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TABLE2

DIPOLEANDQUADRUPOLEPOLARIZABILITIESANDSHIELDINGFACTORSOF

THEHELIUMISOELECTRONICSEQUENCE

_d(I0-24 cm3) _q(]O -40 cm5)

Uncoupled Coupled

Approximation Approximation Accurate
Uncoupled Coupled

Approximation Approximation Accurate

H 13.4

He 0.220

Li + 0.0304

Be_-+ 0.00820

H 3.25

He 1.23

Li + 0.763

Be++ 0. 569

_ii.8 31.4 66.5 -

0.196 0.205 0.0979 0.0965

0.0281 0.0286 0.00472 0.00464

- - 0.000637

_oo 7oo

2,00 2.00 - -

1.00 1.00 0.417 0.388

0.667 0.667 0.257 0.248

0.500 0.500 0.185 -

0.397
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Po(ni_ilr) is taken to be the appropriate Hartree-Fock orbital. Dalgarno

and Parkinson (1959) have madethe further modification of forming anti-

symmetrical combinations of the product type solutions (81) and (90)

and using them to calculate the polarizabilities. It is of interest to

note that the application of this procedure to (114) with the variational

solution (115) yields for the dipole polarizability

N

d 9 (ui , r ui ) (ui r u.l - I _ uj
i=l j_i

(120)

a formula given by Hellman (1935), and application of it to the varia-

tional solution (115) and the functional (114) yields

N_ 4 I _ul_°_ri2 _o_I _o_uj_O_22= _ , u.l ) - I (ui , r i I ,

i=l j_i

(121)

a formula given by Buckingham (1937).

We shall derive the correct version of (120) and (121) in Para.

4°5. They differ because of the inconsistency involved in using a

Hartree-Fock orbital in an equation derived from the Hartree approxima-

tion scheme. This inconsistency is also reflected by the occurrence of
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infinities in the potential derived from (113), wherever the Hartree-

Fock orbital Po(ni_i Ir) has a node. In variational calculations, the

difficulties presented by these unwanted singularities are suppressed

by choosing trial wave functions of the form (119).

In calculations using numerical integration, they are presumably

treated by smoothing Vi (ri) through the singularities (Dalgarno and

Parkinson 1959). The presence of the singularities introduces some

arbitrariness into the derived values of polarizabilities and shielding

factors.

4.4 THESTERNHEIMERPROCEDURE

An instructive analysis of the Sternheimer procedure is obtained

by formally solving (94) as an expansion in terms of the eigenfunctions

of (82), which we label more explicitly by the principal and azimuthal

quantumnumbers u. = u (n_) (Sternheimer 1954). Then as in the deriva-l

tion of (52), we obtain

where

(X2L = 7. _2L (n_) (122)
n_

S I u (nI_I), vL u(n_ I2
(123)

_2L (n_) = -2 e(o) (nI_I) _ ¢(o) (n_)
nI_i#n_
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and

where

72 L (n£) = -2 b

72 L =_ 72 L (n_)

nl

(nil/), v L u(n2 (nI/I), v L u(n/

c(o) c(o)
(n/_ I ) - (n_)

(124)

(125)

where the (n_) summation is over the occupied orbitals and the (n1_ i)

summation is over all possible orbitals and includes an integration over

the continuum.

It is apparent from the form of (123) or (125) that in the evalua-

tion of (106) - (109) the contribution to the polarizability or the

shielding factor from a particular electron shell may be positive or

negative but that in summing over all shells there will occur a nearly

complete cancellation of contributions from transitions between occupied

orbitals. The cancellation is not quite complete because V i (ri) differs

for different electron shells and u(n_) are not members of the same com-

plete set. The Hartree approximation, with or without Sternheimer's

modification, gives rise to spurious contributions from transitions

between occupied orbitals.
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Because of the energy denominators in (129) and (131) it is to

be expected that upward transitions from the outermost shells will pro-

vide the major contributions to the polarizabilities and shielding factors

and this has been confirmed by explicit calculations (cf. Sternheimer

1954, 1957, Wikner and Das 1956).

The summations over _i in (123) or (125) can be written out expli-

citly as in (103). Thus

a d (n_) = -2

s( )I I u (°) (nZ_ _+ I), v I u (°) (n_) I2

nl e(°) (nI_ + I) - e (°) (n_)

= C_d (n_ - _ + I) + _d (n_ - _ - i), say
(126)

or

7
OO

(n_) = -2

(u )I I (°)(nI_ + 2) v2Z u(°)(n_) _(o) (n_) v 2 u (°) (nI_ + 2 u _ , --S •
e(o) (ni£ + 2) - c(°) (n_)

n /

(u u ) lu -- (°) (n£)1(o) (n£), v 2 (o) (nZ_.) (o) (nt_), v21 u

-2 S e(°) (nI£)- e (°) (n£)

n

(127)

= 7_ (nl - _ + 2) + 7m(n_ _) + 7+ (n_ - I - 2), say
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As an illustration of the cancellation of contributions from

transitions between occupied orbits, Sternheimer (1959) finds that for
03 03

Na +, _d(2S p) = 0.117A and _d(2P s) = -0.098A , the largest contri-

bution to _d(2s - p) and _d(2P - s) arising from the 2s - 2p transition.
03

The most important contribution to _d is _d(2P - d) = 0.133A giving a

03

net polarizability of 0.152A

For polarizabilities, transitions involving an increase in the

azimuthal quantum number are usually the most important, especially for

heavy ions with closed shell configurations. For Cs + (Sternheimer 1959),

o5 o5

_q(5p - f) = 5.21A and _q(5p - p) = 1.70A . For shielding factors,

transitions involving no change in the azimuthal quantum number are

usually much more important. For the quadrupole shielding factor of Na +,

Sternheimer (1959) obtains 0.30 for 7m(2p - f) and -5.16 for y=(2p - p)

while for K+, he obtains -17.15 for 7_(3p - p), -1.22 for _(2p p) and

1.05 for the sum of the remaining terms all of which involve a change

in _.

For moderate and heavy ions then, the major contribution to 7_

comes from the radial modes of excitation 7_(n_ - £), the contribution

from the angular modes 7=(n_ -_2) being comparatively small. The radial

modes produce a negative shielding factor and so give rise to anti-

shielding. A similar behavior occurs for hexadecapole moments (Stern-

heimer 1961).
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There is a real physical distinction between radial and angular

modesof excitation which can be understood by considering a non-spherical

nucleus placed at the center of a spherical shell of electric charge

(cf. Kopfermann 1958). There will occur an angular redistribution which

will concentrate the charge in the regions closest to the nuclear charge,

screening the nuclear multipole momentsand leading to a reduction in

the total coupling. There will also occur a radial redistribution, the

shell being distorted inwards by the electrostatic interaction between

the positive nucleus and the negative electric charge. This radial

redistribution gives an apparent increase in the nuclear coupling and

is antishielding.

4.5 THEUNCOUPLEDHARTREE-FOCKAPPROXIMATION

The unphysical transitions between occupied orbitals can be excluded

and the inconsistencies of the Sternheimer procedure can be removedby

using total wave functions which satisfy the Pauli principle. To avoid

mathematical complexity, we shall restrict further development to closed

shell systems.

The unperturbed wave function is written as

N

_o(r) =_ _ ui(°) (ri)
i=l

(128)
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where _is the normalized antisymmetrizing operator and the unperturbed

orbitals u. (°) satisfy the eigenvalue equations
1

H.u.l1(°)(ri) = el(°) u.1(°)(ri) (129)

where

2

Hiut(ri) = ( - 1/2 V i
__z

ri ) ut (ri) +
N f [uk(o) (rk) 12

I Iri - r k

k= i

d_ k ut (_i) i f Uk(°)(rk) ut (rk)

k=lll I r i - rkl

dr k Uk(°) (ri),

(130)

the second summation being restricted to pairs of orbitals with parallel

spins. The total unperturbed wave function _o(r) satisfies the equation

(HI - Eol ) _o(r) = 0 (131)

where

H / _-
N _ lui(°)(ri) 121Uk (°)(r k) 12

i=i i<k j I r i - re I
d_ i d_ k

+

i<k

ui(°) Uk(°)(ri) ui

(o) (rk) uk(o )(rk)

Ir. - [k [

(132)
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and

E I =
o

N f lui(O) ) 12 (o)(o) II (ri lUk (rk)

i I ri_rk I
i=l i<k _.

+ (o) (o) (o) (o)
u (ri) uk (ri) u. (rk) uk (rk)

LL
i<k I I I r - 1_i rk

dr._1d_k"

(133)

Proceeding as for the uncoupled Hartree approximation, we solve

m

- ') @i (_) + VL @o (_) = 0(H I E o (134)

by the substitution

N

_i (r) = i_l_i_ j u. (o) (ri) u.i ] (I) (rj).

(135)

Then (Dalgarno 1959)

(o)) u.(i)
(Hi ci l (_i) + vL (_i) ui

(o)
(_i)

(136)

N

(cj

j=l

- C.
i (i) uj(o)) (ui , (o)) + (uj(O) -- ui(O))}, v L u.]

(o)
(ri)
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and

C_2L= -2

N N

(ui ' VL (ri) ui ) - (Uk(°)' VL (ri) u'(°))x

i=l k=l I,

(i) uk(o)) )(ui , (137)

72L = -2

N N

I _ (o) -- (i)) _ I (o)- (ri)ui(O))ui , VL/ (ri) u i ]] (Uk , VL/
i=l k=l

(Uk(1)' Uk(°)) I "
(138)

If we now solve (136) formally as an expansion in the set of eigenfunc-

tions of (131), we obtain expressions identical to (123) and (125)

except that the (n/_/) summation now excludes all the occupied orbitals.

The solution can be achieved by methods similar to those

employed in deriving the unperturbed orbitals, the substitution (98)

again effecting a reduction to sets of radial equations. Alternatively

a variational method can be employed based on the functionals
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(1)IH. - c.e. (2) = (ui L l i
l

(°)Iui(°)) _

N

L___ (c-j(o) ei(°)) I(uj(O), ui

j=l

(1))12

N

+ 2 ((ui(1), v L (ri) ui(°)) - 2
j=l

(o) (i) uj(uj ' _L (ri) ui(°)) (ui '

(139)

The trial function

(I) (140)u (ri) = X vl(ri) u (o)i _ _ i (_i)

yields the approximate formula for the dipole polarizability

( (o) E4 _-_ (ui , r. u,

¢Zd = 9 _. D.

i= I l

i (ui(O), ri uj(O)) 12 ) 2

(141)

where

2
D. = i ---
l 3

N

2
j=l

(o) ei(cj
(o)) 2 (o) 2

(o), r. u ) I
I (uj _ i

2
+ --

3 N2 l
k=lII

(o)
(li) Uk(°)(ri) u'(°)(rk)l Uk(°)(rj) [ri 2 -

r I_i re

ri°r k ]

(142)

d_ i drk,
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first derived by Knipp (1939) from arguments based upon perturbation

theory. The summation

N N (o) (ri)uk(o) )ui(O ) [ 2

iff
D. = N + 2 _ u. (ri (rk) r i

i i _ ____ a__ I I ri _ re I
i=l k=l

r i rk]

dr. drk

(143)

is the dipole oscillator strength sum rule appropriate to the eigenfunc-

tions of the Hartree-Fock Hamiltonian (132). Knipp (1939) has also

given a generalization of (141) which follows from (139) and the trial

function (118), but it must considerably underestimate _d'

The solution of (137) has been obtained only for beryllium

(Dalgarno and McNamee 1961) and their results are shown in Table 3.

The values obtained from the uncoupled approximation are much smaller

than those obtained by the Sternheimer procedure and it seems that many

of the shielding factors used in the interpretation of experimental data

may be seriously in error. Beryllium is a special case, however, in that

antishielding does not occur (within the Hartree-Fock approximation)

whereas in cases of greatest experimental interest the antishielding

is dominant.
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TABLE3

PROPERTIESOF B
e

i

(is 2 2s 2)

o o

_d (A) 3 6oo _q (A) 5 Too

Sternheimer procedure 9.5 4.4 15.1 1.24

9.1 0.77Fully-coupled approximation 4.5 1.8

A modification of (136) has been used by Khubchandani, Sharma

and Das (1962) to calculate the radial antishielding in C_- and K+. In

place of the exchange operator

N f Uk(°) (rk)ui(1) (rk) dr k Uk(°) (ri) (144)

II Ir -_kl
k=l _t

they write, in effect,

N

f Uk (o) (rk) ui (°) (rk)I
k=ti{ Iri _kl

dr k

Uk(°) (ri)

(o)
u )i (q

u. (1)(ri) " (145)l
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The procedure can be regarded as an extension of the uncoupled

Hartree approximation for determining u. (I) in which the inconsistencies
i

arising from the use of unperturbed Hartree-Fock orbitals are eliminated.

Khubchandani et al° find that compared to the predictions of the Stern-

heimer procedure, the magnitude of 7= for K+ is increased by 30% and for

CI- by 11% but there is an insignificant _ _t_:_at[on of the quadrupole

polarizabilities.

4.6 THE COUPLED HARTREE-FOCK APPROXIMATION

The previous formulae (137) and (138) for polarizabilities and

shielding factors remain valid in the fully-coupled Hartree-Fock approxi-

mation, the only differences arising in the specification of the perturbed

orbitals. The theoretical development has been given by Dalgarno (1959),

Kaneko (1959) and Allen (1960). It follows from writing the wave func-

tion _(_) of the perturbed system as

N

> (°)(_i) + ui(1)(_i) + (146)

and minimizing the total energy with respect to arbitrary variations of

u. (°) and u. (I)
i i

Then expanding in powers of the perturbation, the first

order perturbed orbitals satisfy the equation
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(H i - el(°) ) u.
i v (i) _ ui(1)(ri) + L(ri ) - Ei

J

(o)(ri)

i f Uk(1) (rk) Uk(°) (rk)

k=l I r"- rk I

drk u.(°)(_i)i

+
i (fUk(°)(rk) u,(°)(rk )

i

k=1II Ir I_I - rk

dr k Uk(1)(r i) + f Uk(1)(rk) ui(°)(rk)

l ±-rkl

and

(o)
dr k u k (147)

(1) (o)
e i = (u i , vL(r i) ui(°)) + 2

N

Ifu 
k=l

(i) (rk) uk(o ) (rk) I u. (o) (ri) 1i

Ir- I_i rk

2

dr i dr k - 2

N

k=l

f uk(O)(rk) (O)(rk) uk(l )
u i (r i) u i

I r. - rk I1

(O) (ri)

dr. dr k.

(148)
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In (147), the perturbed orbitals are coupled together both by

direct and exchange interactions. The substitution (98) reduces (147)

to coupled sets of radial equations but the solution involves laborious

computation and it has been carried out only for the helium sequence.

The fully-coupled approximation is, however, much more accurate than

the uncoupled approximation. Thus, if the difference between the Hartree-

Fock Hamiltonian (132) and the actual Hamiltonian of the system is

regarded as a small perturbation, then in the absence of degeneracies

the polarizabilities derived from the fully-coupled approximation are

correct to first order whereas for the polarizabilities derived from

the uncoupled approximation there is a non-vanishing first order correc-

tion (Dalgarno 1959). By an obvious extension of the arguments given

by Cohen and Dalgarno (1961), it may be shown that the theorem applies

also to the calculation of shielding factors. In addition, the fully

coupled approximation will usually yield lower bounds for the polarizabil-

ities (Dalgarno and McNamee 1961a).

For the helium sequence, (147) simplifies to

(1)
( - 1/2 V.2 + V (ri) - c (o)) u (ri) + Ve(ri)i i

f u (I) (rk) u
2
J ] r.

(o) (rk)

- re I
dr k u(°)(r i).

(149)
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Solutions of (149) for dipole and quadrupole perturbations have

been obtained by Dalgarno (1959), Kaneko (1959) and Dalgarno and McNamee

(1961) and the resulting values of the polarizabilities and shielding

factors are given in Table 2. The results are encouraging (again with

the exception of H-), especially for the quadrupole shielding factor.

The dipole shielding factors of the helium sequence are actually given

exactly by the fully-coupled approximation and serve merely as a comput-

ational check.

Since the effect of correlation is usually to reduce the polariza-

bilities, the uncoupled Hartree approximation probably overstimates q

as it does _d" Accordingly, for He

o5 o5
0.0965A < _ < 0.0979A (150)

-- q --

and for Li+

o5 o5
0.00464A < _ < 0.00472A (151)

-- q --

The lower bound for helium is larger than the value given by the more

refined variational calculation of Dalgarno, Davison and Stewart (1960),

suggesting that their adopted six-parameter representation of the unper-

turbed wave function does not provide an accurate description of the

electron density at large distances from the nucleus.
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Watson and Freeman(1962) have pointed out that calculations of

shielding factors can be carried out within the framework of the Hartree-

Fock method, provided two constraints are relaxed. Relaxing the con-

straint that the orbitals be separable into products of radial and angular

factors gives the angular excitation contribution and relaxing the con-

straint that the radial wave functions be the same for electrons with

different magnetic quantumnumbers in a particular electron shell gives

the radial excitation contributions. They have applied their method to

the calculation of the radial excitation contributions to the quadrupole

shielding factors of CI-, Cu+, Br-, Rb+, Cs+, I- and Ce3+. For Cu+,

they obtain - 17.6 in good agreementwith the value of - 17.1 computed

by Sternheimer and Foley (1956) but for CI-, they obtain - 88.9 which is

much larger in magnitude than the value of - 56.5 computed by Sternheimer

and Foley. It would be interesting to comparethe results of Watson

and Freemanwith those given by the fully-coupled approximation.

I amindebted to Dr. A. Freemanfor providing mewith this description
of his work in advance of publication.
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SECTION5

EXPANSIONMETHODS

An assessment of the accuracy of the various methods of calculating

polarizabilities and shielding factors can be obtained by expanding the

wave functions as series in inverse powers of the nuclear charge, a pro-

cedure which uncouples the perturbed orbitals and leads to equations

which can be solved analytically. Its usefulness in predicting polariz-

abilities and shielding factors depends upon the rapidity of convergence

of the derived series expansions. In general, the convergence will be

more rapid for shielding factors, which depend upon the distortion near

the nucleus, than for polarizabilities, which depend upon the distortion

far from the nucleus. The method has the advantage that results for all

membersof an isoelectronic sequenceare obtained in a simple calculation.

5.1 THEHELIUMSEQUENCE

Expansion methods have been used by Dalgarno and Stewart (1958) and

Dalgarno, Davison and Stewart (1960) to solve the exact Schrodinger

equations appropriate to the dipole and quadrupole polarizations of the

helium sequence. They expand

(s) E = _ E (s) (152)
n n s n
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where

¢o (rl' r2) = (Z3/n) exp <-Z(r I + r2)_
(153)

o 2
E = -Z ,
o

(154)

the unperturbed Hamiltonian being

H// = . _i _7122
_!

2 _722
Z Z

rI r2
(155)

-i
To first order in Z ,

CZ
2L = 2 < ¢i(°) IVL - El (°)I _ °)o

¢i (°) IvL - El (°) I¢o (1) ) + I _l(1)IVL - El(°) I

(156)

with a similar expression for 72L.

(i) and ¢ o are solutions of
o o

(o)
The first order functions _i

(HI/ -E (o)) _ (i)
o o

i (i) I o
+ E ¢

Irl - r 2 I o o

= 0

(157)
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(o)) _i(o) +$(7L El(O) _ o = 0 (158)(HII - Eo - _ o
N /

i

< j iv )(i) + i _Eo(1) \_,i(o) + _ El(O)
_i ]rI _ r21 L
i

°o

o = 0. (159)
o

_i (°) of (158) can be obtained immediately but, becauseThe solution

of the electron interaction term, the solutions of (157) and (159) pre-

sent great difficulty. However, using the methods of Dalgarno and Stewart

(1956), (156) can be written in the alternative form

2L = 2 I_l(°) [ VL El (°)i _ °Io

+ 2 I 2 _k,_b(o) I 1
o i_1 _ _21

Eo(1)I _2(°)_

+

Ill - _21
- E

o (I) i _i(0)I) (160)
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where

o) ¢2(o) + _ El(O) ) ¢(H/I _ Eo (vL

(o)
I

- (¢o°I vL - E 1 (°)I¢1(°)) ¢o° = 0 (161)

and the solution of (161) can be achieved by elementary means. The

analogous expression for 72L is (Dalgarno, Davison and Stewart 1960)

72L 2(¢i(o) i VL_ El(O) i ¢ o= o )

i E (i)I¢i(°))+ 2 (¢l(°)llrl _ _21 o

(1) i¢ o)_+ (¢ii I i Eo o
(162)

where

_ o) El(O)l ) (o) + _ El(O)(HI/ Eo ¢iI + (VlL - ¢i (VL ) ¢i

(o)"

(°) I VL,' El(°)/ I ¢i (°)) + (¢o°IVL - E1 (°)1 ¢1(°)_))
0

¢
0

(163)

=0,
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and the solution of (163) can also be achieved by elementary means.

The details can be found in the papers cited.

-i
to first order in Z

The results are that

9 207 O(Z-6) (164)
_d = Z4 + +16Z5

2
rBoo= _ (165)

30 10381 -8)= -- + + 0(Z (166)
q Z6 128Z7

2 i
7oo +3Z 18Z2

(480 _n 2 - 329) + 0(Z-3) (167)

Applying the screening approximation which takes someaccount of higher

order terms (Dalgarno and Stewart 1960), we obtain

(_d =_ 9/(Z-O" 3594)4 (168)

_ = 2/Z (169)

= 30/ (Z_0.4506)6- (170)
q

7_ = 2/3(Z-0.3092). (171)
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The accuracy of the simple formulae is superior to that of the

uncoupled Hartree approximation and is comparable to that of the coupled

Hartree approximation. Thus (171) gives a value of 0.394 for the quad-

rupole shielding factor of helium compared to the (probably) accurate

value of 0.396. The accuracy of the formulae increases rapidly with

increasing nuclear charge.

A similar analysis can be applied to the Hartree-Fock approximation

(Cohenand Dalgarno 1961). For the helium sequence, it is found that

the uncoupled approximation is equivalent to the formulae

9 1923
= _Z-DT+ 128Z5 + 0(Z-6) (172)_d

2 3 -3)
_oo = _ + + 0(Z (173)

4 Z 2

(Cohen and Dalgarno 1961, unpublished)

30 10485 (Z-8)a = -- + + 0 (174)
q Z6 128Z 7

2 13 -3)
7o0 = 3-Z + + 0(Z (175)

48Z 2

(Cohen, Dalgarno and McNamee 1962), whereas the coupled approximation is

equivalent to formulae identical to (168J, (169), (170) and (171). The

coupled approximation therefore leads to results which are correct to

first order in harmony with the assertions in Para. 4.6. For _m the

coupled approximation actually leads to results which are correct to all

-i
orders of Z

63



5.2 THEBERYLLIUMSEQUENCE

Cohen, Dalgarno and McNamee(1962) have also conducted an analysis

of the calculation of the quadrupole polarizabilities and nuclear shield-

ing factors of the beryllium sequence using the uncoupled and coupled

Hartree-Fock approximations. According to the uncoupled approximation,

they find that

32670 8 002.
a = (i + ' (176)

q Z6 _)

2 (i + 1.263. (177)--f--)

and according to the coupled approximation they find that

32670 9.199)= (I +- (178)
q Z 6 Z

2 (i + i. 220
7oo = _ _) (179)

It appears from these comparisons that only a small improvement in

accuracy will result from using the coupled approximation in place of

the uncoupled approximation. It will be of interest to extend the com-

parison to cases where antishielding can occur.

The series expansions for _ converge too slowly to be quantitatively
q

useful but we may obtai_ values of Too of acceptable accuracy from (177)

64



and (179). Applying the screening approximation (Dalgarno and Stewart

1960), we obtain for the uncoupled approximation

70o = 2/(Z-I. 263) (180)

which yields a value of 0.73 for beryllium in good _.<rc_mentwith the

value of 0.77 obtained by numerical integration by Dalgarno and McNamee

(1961b). The coupled approximation yields the more accurate formulae

7o° = 2/(Z-I. 220) (181)

according to which 7_ is 0.72 for beryllium.

Contrary to the case of the helium sequence, (178) and (179) are

not identical to the exact expansions. This occurs because the Hartree-

Fock approximation does not take account of the _egenera_j in the limit

of infinite Z of the substates commonto a particular quantumnumber

(Layzer 1959, Linderberg and Shull 1960). Thus the correct zero order

wave function for the ground states of the beryllium sequence is not
I

_o(IS2 2s2) -S as the Hartree-Fock approximation asserts but _:hc :inear

combination

4o (]f;) a _o(IS2 2s2) _ s2 2)= _;+ b _o(i 2p IS (182)
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where a and b are constants so chosen that the matrix of the Hamiltonian

is diagonal. The modification is important for the second component of

the wave function introduces the possibility of antishielding, Cohen

et al. (1962) have calculated the zero order changes in the quadrupole

polarizability and shielding factor and they find that the leading term

of (178) should be 31541/Z 6 in place of 32670/Z 6 and that the leading

term of (179) should be 1.784/Z in place of 2/Z. It appears that the

coupled approximation may overestimate _q by about 4% and 7_ by about

11%.

In the case of the dipole polarizability of beryllium the calcula-

tion would be further complicated because the dipole perturbation itself

couples the two components of (182) to _o(iS 2 2s2p) ip, with which they

are degenerate. To obtain reliable values of _d' it seems necessary to

adopt a multi-configuration approach of the kind explored by Donath (1961).
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SECTION6

STATISTICALMETHODS

Calculations of polarizabilities (Gombas1944, 1956) and of shield-

ing factors (Sternheimer 1950, 1951, 1954, 1957, 1961; Sternheimer and

Foley 1953) have been carried out based upon the Thomas-Fermimodel of

the atom. A comparison of the dipole polarizabilities computedby Gombas

(1944) with the most accurate values available (cf. Table 5) is given

in Table 4. The method overestimates _d considerably for neutral atoms

but its accuracy improves with incr_asing massand with increasing excess

charge.

A similar behaviour may be anticipated for shielding factors but as

currently employed the statistical description does not yield any informa-

tion on the radial antishielding which is dominant for heavy systems.
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TABLE4

-24 3
DIPOLEPOLARIZABILITIESIN UNITSOF i0 cm

System

F

CI

Br

I

Ne

A

Kr

Xe

Ne+

K+

Rb+

Cs +

q-+
Mg

Ca++

Sr

Ba-H-

Statistical Theory

6.20

7.10

8.41

9.21

2.01

2.88

4. O0

4.61

O. 850

1.36

2.14

2.66

0. 400

0.721

1.30

1.70

Accurate

_I. 2

_3

~4.5

_7

0.40

1.64

2.48

4.04

0.15

_0.9

_1.7

_2.5

0.07

_0.5

_i.i

_1.7

Value
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TABLE5*

+
Li

Be 2+

B3+

C4+

DIPOLE POLARIZABILITIES IN UNITS OF 10 -24 3
cm

Sys tern (a)

-_:_---_ ..... (b) System (a)

14.9(i) _ (B)
31.4 (3)

13.4 (2) C 2. i (21)

30.2 (4) 02 +
He O. 3 (16)o.218(I)

0.224( 2)

0.220(5)

0.0305(1)

0.0307 (2)

0.0304(5)

0.00813( I)

0.00825 (2)

0. 196 (5, 6) Ne3+ 0.13 (16)

o. 2oso 0 )
N 1.3(21)

1.13 (22)

o.2o51 (7) o+ 616)
0.49

O, 0286 (8)
o o. 89 (21)

o. 77 (22)

0"0281 (5) Ne2+ 0,15(16)

o, o8 (9, 1o)
O" 3.2(16)

O. 024 (11, 12)
F O. 6 (21)

O. 00759 (14) Ne + O. 21 (16)

o. 04 (9)
F I. 9 (23)

0.007 (11,12) 1.0 (9 , I0)

1.8(21)
0. 00288 (i4) O. 76 (13)

O. 02 (9) i. 2 (26)

_le 0,40(21)
O, 003 (11,12) O, 395 (7)

O. 62 (6)
0,367( 26 )

0"00132 (14) Na + 0,152(23)

0. 0013 (8) 0.2 (9, i0)

0. 145 (16) 26 (13)
o.o12(9) o.

0.00303 (2)

O. 00139 (2)

0.154 (26)
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Li

Be

B

O3+

Cl-

A

R +

Ca 2+

Sc 3+

Tf 4+

R

Cs

Sc

lee++

Cu +

Zn 2+

2c(I5)

25 (16)

24.9 (17)

9.6 (16)

9.5 (20)

5.1 (21)

0.3 (16)

24.4 (18)

20 + 3 (19)

16 + 3 (25)

4.5 (2o)
AI 3+

Mg 2+

EL 4+

Na

7.19(23)
3.5 (9)

Sr 2+

3.0(10,13)

2.40 (6)
1.64 (7)

1.24 (23) Rb
O. 9 (9, 10)

o. 8 (11)
Ca 2+

1.2(13)

0 73 (12, 15) Sn4+
• O. 54 (11,9)

I"

0.35 (9)

O. 24 (9)

44.4 (17) Xe
41.6(18)

Cs +

40 + 5(19)
57 (15)

154 (15)

Ba 2+

.1(13)

O. 982 (23)
1.6(13)

o. 8 (13)

La 3+

Cs 67.7(17)

49.1(17)

5.60 (23),

O. 082 (16)
O.io(9,11)

O. 072 (24)

O. 012 (10)

O. 050 (12)
o. 053 (1i)

0.045(16)
o. 07 (9, lo)

0.027 (16)
o. 04 (9, _o)

22.9 (17)
24.6 (18)

20+ 2.5(19)

1.4 (so)

I. 6 (13)

43.9 (18)

40 + 5(19)

I. 8 (13)

3.4 (13)

7.6 (9)

6.2(10,13)

4.04 (7)

2.7 (9, i o)

2.4(11)

3.1 (I3)

Z. 7 (9)

2.5 (I3)

i. 3 (9)

53.8(18)
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Ge 4+ i. 0 (13)

Cu 2+ O. 2 (13) Ba

Br- 4.97 (9) pb2+

4.15(10, 13 ) Hg 2+ 2.78(23) t

Kr 2.48 (7) Te+

Rb+ 2.92 (23)t 1.7 (9,10) U6+ 1.34(23) t

1.8 (13)

Sr 2+ 0.86 (9)

l O(1l)

52.5 + 6.5 (19)

62 (25)

4.9 (13)

5.2 (13)

Footnotes for Table 5

Values for a few systems not included in Table 4 have been estimated by

Pauling (1927) using a screened hydrogenic formula.

These values are computed using Hartree wave functions, which usually

overestimate _d considerably.

(a) Values computed using the Sternheimer procedure. In References (16)

and (21), the antisymmetrical version has been used.

(b) Experimental values and more accurate theoretical values.
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SECTION7

I_UI_RICALVALUES

7.1 DIPOLEPOLARIZABILITIES

A compilation of dipole polarizabilities computedusing the Stern-

heimer procedure or the antisymmetrical version of it is given in Table

5. Whenthe result of a more refined theoretical calculation exists it

also is included.

Experimental values of dipole polarizabilities can be obtained from

deflection measurementssuch as those of Salop, Pollack and Bederson

(1961), from extrapolation of measurementsof refractive indices (cf.

Dalgarno and Kingston 1960), from analysis of the Rydberg-Ritz correc-

tions for spectral series (Born and Heisenberg 1924; Mayer and Mayer

1933), from the indices of refraction of salts in aqueous solutions

(Fajans and Joos 1924) and from refraction data on crystals (Tessman,

Kahn and Shockley 1953). Table 4 includes the experimental values.

An assessment of the accuracy of the theoretical values is confused

by defects in the theories used to interpret the experimental data and

by environmental effects which cause the polarizability to differ from
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that of the free atom or ion (Burns and Wikner 1961). The Sternheimer

procedure, being essentially a single-electron approximation, should

yield accurate dipole polarizabilities for the alkali metals but its

accuracy is unlikely to be sustained for many-electron systems, especially

those with an outermost shell of electrons described by orbitals with

nodes other than at the nucleus. Table 5 is, at least, not in disagree-

ment with this view. It appear that with the exceptions of beryllium

and boron the polarizabilities predicted for neutral atoms lighter than

sodium are unlikely to be in error by more than 15%,a figure also

suggested by somecalculations of the induced electric field at the

nucleus by Sternheimer (1959). For beryllium, boron and atoms heavier

than sodium, the possible error may approach a factor of two. For

positive ions the errors are smaller and for negatlve ions they are

larger. It is usually argued that correlation effects act to reduce

polarizabilities, suggesting that the predicted polarizabilities are

too large. This is probably true in general but not always, as the

example of H- demonstrates.

The table provides clear evidence that environmental effects signi-

ficantly modify polarizabilities. Thus the dipole polarizability o0f

10-24 3free Na+ cannot be very different from 0.15 x cm whereas the

value derived from the refractivity of ionic crystals is 0.26 x 10-24

3
cm
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7.2 QUADRUPOLEPOLARIZABILITIES

A compilation of quadrupole polarizabilities computed using the

Sternheimer procedure is given in Table 6. The accuracy of the predicted

quadrupole polarizabilities is comparable to but somewhathigher than

that of the predicted dipole polarizabilities.

7.3 QUADRUPOLESHIELDINGFACTORS

Quadrupole shielding factors, computedaccording to the Sternheimer

procedure, are collected together in Table 7. The results of more

refined theoretical calculations are also included and are given in

brackets. The accuracy of the predicted values is comparable to but

somewhatlower than that of the dipole polarizabilities.

The significant feature of the table is the large antishielding

predicted for heavy systems, to which Foley, Sternheimer and Tycko (1954)

first drew attention. Qualitative confirmation of the e==istence of

large antishielding effects has been obtained from nuclear quadrupole

coupling data in alkali-halide gases (cf. Townes1958; Wikner and Das

1958; Burns 1959a) and in ionic solids (cf. Bersohn 1958; Bernheim and

Gutowsky 1960; Simmonsand Slichter 1961; Hewitt and Taylor 1962), from

analysis of nuclear spin transitions in crystals induced by ultrasonic

waves (Proctor and Robinson 1956; Jennings, Tanttila and Kraus 1958;

Taylor and Bloemberger 1959; Bolef and Mernes 1959), from nuclear magnetic

relaxation times in ionic crystals (Van Kranendonk 1954; Das, Roy and

GhoshRoy 1956; Wikner, Blumberg and Hahn 1960), from dislocation studies
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2_ABL_6*

Sys tern

QUADRUPoLE

POLARIZABILITIES

OF

H

_e

66.5 (27)

67.0 (28)

O. 0993 (27)

SYstem

_g2+

AI 3+

Lt +

0.0949(28)

0.0979 (5)

0.00473 (27)

St 4+

CI"

B3+

Be

F

Be 2+

O. 00471 (28)

A
O. 00472 (5)

K+

O. 000637 (27)

Ca 2+

O. 000633 (28)

Cu +
O. 000142 628)

15.1 (20) _b +

2.38 (29)

O. 370 (30) Cs+

O, 0670 (28)

0.0634 (23)

10 -40 5
cm

O.0223 (30)

o.o_ol (28)

o.00915(30)

o.00438 (30)

13.8 (27)

13.1 (29)#

2.19 (30)

O. 733 (27)

O. 721 (31)#

O. 0309 (30)

i. 28 (27)

2.99 (27)¢

3.03 (3I)_-

7.80 (27)-I-

7.86 (3_)_
O. 0649 (31 )

:o:a:: ":lK._ValcU:

, Oa , Rb+ Cs + ed out by Wikner
%Computed , Br- and I'. and Das

(1958)
USing UnpertUrbed Hartree °rbitals#These Values ar

tion b_.... . e in harmony with the resul

J _aUbc_andanf et_al. (1962). ts of a more refined Caleula.
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TABLE 7

QUADRUPOLE SHIELDING FACTORs%

H
1. 141 (28)

F

1. 131 (23) -25.7 (29), Ca 2+
IVe

He 0. 416 (28) 8.99 (30)_: Mn 2+
Na +

O. 424 (23) - 4.1 (34)
Fe 3+

C0.397) (32) " 4.5(28) Cu +

Li+ O. 056 (28) - 4.6 (23)

Mg 2+

0. 263 (23) - 2.7 (30),
A13+

- 2.6 (28)

(0. 249) (32) Si4+ Ga3+

Be++ O. 185 (28) - i. 9 (30),
CI - Br"

O. 189 (23) -56.6 (34)

(0. 181) (32) -50.1 (29) ab +

B3+ 0. I45 (28) -49.3 (35)

C0. 142) (32) (-55.5) (37) Cd 2+

Be I. 24 (20) (-87.5) (36),
A Ag+

(0.72) (33) -21.2 (30),
B+ K+ In 3+

0. 768 (23) -17.3 (23) .
I

(0.53) (33) -12.8 (35)
Cs +

(-16.3) (37)

% A Partial evaluation of for Cu +,

recently by Sternheimer (1962b). V++' Ag + and Hg ++ has

* The OUter Shell contribution Only has been included.

* In (36), the radial contribution Only has been calculated.

- 8.4 (30),

- 6.81 (29)

- 6.17 (29)

-15.0 (34)

-I3.8(35)

(-15.1) (36),

- 6.94 (29)

-97.0 (35)**

-41.0 (29)

-49.3 (35)**

-70.7 (34)**

-15 (29)%f

"22.1 (29)

-15.3 (29)**{#

-179 (35)**

-II0(35)**

-144(34)**

been reported

The Valuegiven includes the angular contribution Obtained in reference (34).

** These Values are COmputed USing Her%tee Wave functions
%% This is an interpolated value.
# In reference 2
functio (9), it

ns for in3+ wo,._ Is suggeste d that the

_u give a Value of -ii. Use of Hartree.Fock Wave
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References to Tables 5, 6, and 7.

(I)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(_)

(Ii)

(12)

(13)

(14)

(15)

(16)

(17)

(IS)

(19)

(20)

(21)

(22)

Wikner and Das (1957)

Sternheimer (1957)

Schwartz (1961)

Geltman (1962)

Dalgarno and McNamee (1961a)

Kaneko (1959)

Dalgarno and Kingston (1960)

Baber and Hasse / (1937)

Fajan and Joos (1924)

Born and Heisenberg (1924)

Mayer and Mayer (1933)

Sternheimer (1954)

Tessman, Kahn and Shockley (1953)

Dalgarno and Stewart (1958)

Sundbom (1958)

Parkinson (1960)

Sternheimer (1962)

Dalgarno and Kingston (1959)

Salop, Pollack and Bederson (1961)

Dalgarno and McNamee (1961b)

Dalgarno and Parkinson (1959)

Alpher and White (1959)
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References to Tables 5, 6, and 7. (Continued)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

Sternheimer (1959)

Bockasten (1956)

Drechsler and Muller (1952)

Donath (1961)

Sternheimer (1957)

Das and Bersohn (1956)

Burns and Wikner (1961)

Burns (1959b)

Burns (1959a)

Dalgarno, Davison and Stewart (1960)

Cohen, Dalgarno and McNamee (1962)

Sternheimer and Foley (1956)

Wikner and Das (1958)

Watson and Freeman (1962)

Khubchandani, Sharma and Das (1962).
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(Otsuka 1958), and from mixed crystal experiments (Kawamura,Otsuka and

Ishiwatari 1956; Otsuka and Kawamura1957). There are serious deficien-

cies in the theories used to interpret the experiments. Somemeasure of

quantitative agreement is found between the predicted and derived values

of 7oofor positive ions but the predicted values of _= for negative ions

are apparently too large by a factor of about four (Burns and Wikner 1961).

Although errors of this order cannot be excluded, the work of Watson and

Freeman (1962) suggests that the Sternheimer procedure underestimates

17_I and modification of the negative ion structure by its environment

must be a major source of the discrepancies (Burns and Wikner 1961).

7.4 HIGHERORDERPOLARIZABILITIESANDSHIELDINGFACTORS

Somecalculations of higher order polarizabilities have been

reported by Burns (1959a) and by Stewart (1961) and of higher order

shielding factors by Sternheimer (1961). The hexadecapole antishielding

factors are very large and higher order effects are important (Stern-

heimer 1962b).

79



REFERENCES

Abbott, J. A. and Bolton, H. C., 1954, Proc. Roy. Soc. A221, 135.

Allen, L. C., 1960, Phys. Rev. __118,167.

Alpher, R. A. and White, D. R., 1959, Phys. Fluids i, 1"953.

Baber, T. D. and HasseI, H. T., 1937, Proc. Ca_._b.Phil. Soc. 33, 253.

Bates, D. R. and Lewis, J. To, 1955, Proc. Phys. Soc. A68, 173.

Bernheim, R. A. and Gutowsky, H. S., 1960, J. Chem.Phys. 32, 1072.

Bersohn, R., 1958, J. Chem.Phys. 29, 326.

Bockasten, K., 1956, Phys. Rev. 102, 729.

Bolef, D. Io and Mernes, M., 1959, Phys. Rev. 114, 1441.

Born, M. and Heisenberg, W., 1942, Z. Phys. 23, 388.

Bravin, A. V., 1953, J. Exptl. Theor. Phys. 25, 1947.

Bravin, A. V., 1954, J. Exptl. Theor. Phys. 27, 384.

Brindley, E. W., 1933, Phys. Rev. __43,1030.

Buckingham, R. A., 1937, Proc. Roy. Soc. AI60, 94.

Burns, G., 1959a, Phys. Rev. 115, 357.

Burns, G., 1959a, J. Chem.Phys. 31, 1253.

Burns, G. and Wikner, E. G., 1961, Phys. Rev. __121,155.

Cohen, M. and Dalgarno, A., 1961a, Proc. Phys. Soc. 77, 748.

Cohen, M. and Dalgarno, A., 1961b, Proc. Roy. Soc. A261, 565.

Cohen, M., Dalgarno, A. and McNamee,J. M., 1962, Proc. Roy. Soc. _.

Dalgarno, A., 1959, Proc. Roy. Soc. A251, 282.

Dalgarno, A., Davison, W. D. and Stewart, A. L., 1960, Proc. Roy.Soc.
A257, 115.

80



Dalgarno, A. and Ewart, R. W., 1962, Proc. Phys. Soc. 80, 616.

Dalgarno, A. and Kingston, A. E., 1958, Proc. Phys. Soc. 72, 1053.

Dalgarno, A. and Kin_lston, A. E., 1959, Proc. Phys. Soc. 73, 455.

Dalgarno, A. and Kingston, A. E., 1960, Proc. Roy. Soc. A259, 424.

Dalgarno, A. and Lewis, J. T., 1955, Proc. Roy. Soc. A233, 70.

Dalgarno, A. and Lewis, J. T., 1956, Proc. Phys. Soc. A69, 628.

Dalgarno, A. and Lewis, J. T., 1957, Proc. Roy. Soc. A240, 284.

Dalgarno, A. and McNamee,J. M., 1961a, Proc. Phys. Soc. 77, 673.

Dalgarno, A. and McNamee,J. M., 1961b, J. Chem.Phys. 35, 1517.

Dalgarno, A. and Stewart, A° L., 1956, Proc. Roy. Soc. A238, 269.

Dalgarno, A. and Stewart, A. L., 1958, Proc. Roy. Soc. A247, 245.

Dalgarno, A. and Stewart, A. L., 1960, Proc. Roy. Soc. A257, 534.

Das, T. P. and Bersohn, R., 1956, Phys. Rev. 102, 360.

Das, T. P., Roy, D. K. and GhoshRoy, S. K., 1956, Phys. Rev. 104, 1568.

Donath, W. E., 1961, I.D.M. Research Report, RW-27.

Drechsler, M. and Muller, E. W., 1952, Z. Phys. 132, 195.

Fajans, K. and Joos, G., 1924, Z. Phys. __23'I.

Feynman,R. P., 1939, Phys. Rev. 56, 340.

Foley, H. M., Sternheimer, R. M. and Tycko, D., 1954, Phys. Rev. 93, 734.

Geltman, S., 1962, Astrophys. J. i36, 935.

Gombas,P., 1956, Handbuchder Phys. (Springer:Berlin) 36.

Gombas,P., 1944, Z. Phys. 122, 497.

Hassez, H. R., 1930, Proc. Camb.Phil. Soc. 26, 542.

Hasse/, H. R., 1931, Proc. Camb.Phil. Soc. 27, 66.

81



Hellman, R., 1935, Acta Physicochim. U.S.S.R. 2, 273.

Hewitt, R. R. and Taylor, T. T., 1962, Phys. Rev. 125, 524.

Hylleraas, E., 1929, Z. Phys. 54, 347.

Jennings, D. A., Tanttila, W. H. and Kraus, 0., 1958, Phys. Rev. 109,
1059.

Johnston, D. R., Oudemans,G. J. and Cole, R. H., 1960, J. Chem.Phys.
3._33, 1310.

Kaneko, S., 1959, J. Phys. Soc., Japan Ii, 1600.

Knipp, J. K., 1939, Phys. Rev. 55, 1244.

Kopfermann, H., 1958, Nuclear Moments (Academic Press, New York).

Kirkwood, J. E., 1931, Physik. Zeits. 33, 57.

Layzer, D., 1959, Annals Phys. 8, 271.

Lennard-Jones, J. E., 1930, Proc. Roy. Soc. A129, 598.

Linderberg, J. and Shull, H., 1960, J. Mol. Spectr. _, I.

Mayer, J. E. and Mayer, M. E., 1933, Phys. Rev. 43, 605.

Otsuka, E. and Kawamura, H., 1957, J. Phys. Soc. Japan 12, 1071.

Otsuka, E., 1958, J. Phys. Soc. Japan 13, 1155.

Parkinson, D., 1960, Proc. Phys. Soc. 75, 169.

Pauling, L., 1927, Proc. Roy. Soc. All4, 191.

Peng, H., 1941, Proc. Roy. Soc. A178, 499.

Pople, J. A. and Schofield, P., 1957, Phil. Mag. Ser. 8, _, 591.

Proctor, W. E. and Robinson, W. A., 1956, Phys. Rev. 104, 1344.

Racah, G., 1942, Phys. Rev. 62, 438.

Rose, M., 1957, Elementary Theory of Angular Momentum (Wiley:New York).

Salop, A., Pollack, E. and Bederson, B., 1961, Phys. Rev. 124, 1431.

82



Schwartz, C., 1961, Phys. Rev. 123, 1700.

Simmons,W. W. and Slichter, C. P., 1961, Phys. Rev. 121, 1580.

Slater, J. C. and Kirkwood, J. G., 1932, Phys. Rev. 37, 682.

Sternheimer, R. M., 1950, Phys. Rev. 80, 102.

Sternheimer, R. M., 1951, Phys. Rev. 84, 244.

Sternheimer, R. M., and Foley, H. M., Phys. Rev. 92, 1460, (1953).

Sternheimer, R. M., 1954, Phys. Rev. 96, 951.

Sternheimer, R. M., 1957, Phys. Rev. 107, 1565.

Sternheimer, R. M., 1959, Phys. Rev. 115, 1198.

Sternheimer, R. M., 1961, Phys. Rev. Letters 6, 190; Phys. Rev. 123, 870.

Sternheimer, R. M., 1962a, Phys. Rev.

Sternheimer, R. M., 1962b, phys. Rev. 127, 812.

Stewart, A. L., 1961, Proc. Phys. Soc. 77, 447.

Sundbom,M., 1958, Arkiv Fys. 13, 539.

Taylor, E. F. and Bloembergen, N., 1959, Phys. Rev. 113, 431.

Temkin, A., 1957, Phys. Rev° 107, 1004.

Tessman,J. R., Kahn, A. H. and Shockley, W., 1953, Phys. Rev. 92, 890.

Tillieu, J. and Guy, J., 1953, C. R. Adad, Sci. 236, 2222.
//

Townes, C. H., 1958, Handbuch der Phys. 38 (Springer:Berlin) Ed. S. Flugge.

Valiev, K. A., 1960, Soviet Physics, JETP 37, 77.

Van Krandendonk, J., 1954, Physica 20, 781.

Van Vleck, J. H., 1932, The Theory of Electric and Magnetic Susceptibil-

ities (Clarendon Press:Oxford).

Vinti, J. P., 1932, Phys. Rev. 41, 813.

Waller, I., 1926, Z. Phys. 28, 635.

Wikner, E. G. and Das, T. P., 1957. Phys. Rev. 107, 497.

Wikner, E. G. and Das, T. P., 1958, Phys. Rev. 109, 360.

Wikner, E. G., Blumberg, W. E. and Hahn, E. L., 1960, Phys. Rev. 118, 631.

83


